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On the motions of the offset impact oscillator 
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Clarendon Laboratory, Oxford 0x1 3PU, UK 

Received 12 August 1983, in final form 9 February 1984 

Abstract. The motions of a periodically forced, damped, harmonic oscillator with one 
degree of freedom, impacting with no energy loss against a wall, are considered. In the 
‘offset’ case considered here, the wall is not at the rest point of the oscillator. The regions 
of the stability of single impact orbits are calculated as functions of the forcing amplitude 
and frequency. A digital simulation is carried out, producing multi-impact orbits, flip and 
tangent bifurcations and chaotic attractors. Hysteresis between attractors is observed, and 
crises of the attractor are found which are not immediately identifiable with the collisions 
of unstable periodic and chaotic attractors. Some return maps for chaotic motions are 
plotted, providing evidence that the attractors do not have integer dimension; the families 
of curves do, however, show local structures which may be identified with nearby stable 
motions. 

1. Introduction 

Much interest has been aroused lately in the behaviour of nonlinear dissipative 
dynamical systems, and in particular in the use of two-dimensional mappings on the 
phase space of systems with one degree of freedom. (See Ott 1981 for a review.) The 
impact oscillator is computationally one of the simplest such systems one can think of; 
it consists of a one-dimensional damped simple harmonic oscillator which bounces 
elastically (i.e. without loss of energy) against a wall or stop. The mathematical 
definition is given in $ 2 .  The equations of motion for this nonlinear system are 
particularly easy to compute, and as is shown below, it is possible to derive theoretical 
bounds for some of the possible orbits which makes the model of more than computa- 
tional interest. 

Figure 1 shows one visualisation of the system. The spring is driven sinusoidally 
and is stress free when the displacement is zero. The mass bounces on a perfectly 
elastic wall at position xo which may be greater or less than zero. The rest point of 
the oscillator is either at x = xo for xo < 0 or at x = 0 for xo > 0. In  both cases there are 
trivial motions; if xo> 0 the mass may never hit the wall, and if xo<O the mass may 
never leave the wall. In both cases there are also periodic impacting motions for 
sufficient drive amplitude; each impact is characterised by the impact velocity (U) and 
the phase ( 4 )  of the drive at the time of impact. In order to study the bifurcations of 
the system it suffices to study the behaviour of the values of the impact velocity U and 
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Figure 1. A visualisation of the offset impact oscillator 

phase 4 of the drive at impact; between impacts the differential equation describing 
the motion is linear and has a unique solution for the initial conditions set by the 
impact. There are, therefore, no bifurcations of the system other than those revealed 
by a study of the impact values. 

These impact values may be repeated at  every mth impact ( m  = I ,  2 , 3 , .  . .) and 
during the interval between repeating impact values, n periods of the drive may have 
occurred (n = 1,2,3,  . . .). We refer to this situation as a periodic m-impact period-n 
orbit, where the orbit is the trajectory of the system in phase space. 

The variables affecting the motion are the drive amplitude p, the drive angular 
frequency w (the natural angular frequency of the unconstrained undamped system is 
scaled to unity), the damping coefficient a and the position of the wall at  x,,. When 
the control parameters drive amplitude /3 or  drive frequency w are varied smoothly 
through the values at  which bifurcation occurs, the trajectory changes smoothly even 
though there is a discontinuous change in the numbers n and m which describe the 
limiting periodic motions. The relaxation time for the trajectory to approach equili- 
brium increases as (p ,  w )  approach their bifurcation values from either side. 

Shaw and Holmes (1982) (sH), who use a restitution coefficient r rather than 
damping, to make the map contracting, and Thompson and  Ghaffari (1982) (TG) both 
set xo = 0, which results in the drive amplitude being unimportant. Both these studies 
report that as the drive frequency is changed, period doubling occurs from both 
harmonic ( n  = I )  and  subharmonic (n > 1) solutions. Stable m-impact period-n orbits 
evolve into stable 2m-impact period-2n orbits as the drive frequency w is slowly varied. 
These (2m, 2n) periods in turn double repeatedly at successively smaller increments 
of w until for values of w above the ‘accumulation point’ chaotic motion occurs in 
which the impact values cease to be periodic and  exhibit the familiar (Ott 1981) strange 
attracting behaviour. SH obtain expressions for bounds on the restitution coefficient r 
and the drive frequency w for stable 1-impact orbits, and they establish that ‘supercritical 
flip bifurcations’ (Ott 1981) occur at the boundaries of the stable regions in the rw plane. 

In the offset case studied here, we find that flip bifurcation can also occur with 
changes in drive amplitude (p / lxo l  when scaled to the wall position), and that tangent 
bifurcations (Ott I98 I) ,  whose general characteristic is that periodic motions appear 
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from chaos preceeded by intermittency, occur (Manneville and Pomeau 1979 and 
Pomeau and Manneville 1980). We have not found unequivocal evidence for this type 
of intermittency although it has been observed in a nonlinear transmission line construc- 
ted from eight coupled offset impact oscillators (Usher and Jefferies 1983), complete 
with laminar phases and aperiodic bursts. 

There are tangent bifurcations predicted from the analysis of the stability of 1-impact 
orbits (see § 4) but there is also hysteresis when moving through the bifurcation-the 
tangent bifurcation only appears when approached from the stable orbit. Very often 
there is a coexisting stable orbit into which the system drops rather than exhibiting 
intermittency and chaos. Figure 3 shows this: the tangent bifurcation from a period-2 
1-impact orbit occurs at the expected value ( p  = 1.495) when approached from above, 
and drops into a stable 1-impact orbit of period 1. If p is then increased again, this 
period- 1 orbit undergoes flip bifurcations to chaos before settling into the original 
period-2 orbit. 

The Poincare maps themselves show clearly a Henon-like structure in the chaotic 
regions (Henon 1976). In addition, after nearly every sequence of period doubling 
bifurcations, crises occur, (Grebogi et a1 1982) in which there are sudden changes in 
the bounds of the motion. The return map of the attractor is highly folded in the 
chacj.; . -?gion and the attractor appears to have non-integer dimension, consisting of 
families of curves, regions of which are identifiable with stable periodic orbits that exist 
near the chaotic region. Robinson (1982) has made an experimental analogue electronic 
study of the piecewise linear system, and also reports period doubling, chaotic motion, 
and hysteresis, in the case of large slope ratio which approximates to the offset impact 
oscillator. Cascais et a1 (1983) and Jeffries and Perez (1982, 1983) and Perez and 
Jeffries (1982) have studied an RCL circuit with a varactor diode as a nonlinear 
capacitance, which shows similar behaviour, including the Henon-like Poincari map 
and a folded (possibly non-integer-dimensional) return map of the attractor. (Iooss 
1979). 

2. The system 

The impact oscillator is a limiting case as w ,  +cc of the one-dimensional piecewise 
linear system 

X x < xo 

xo-(l -w:>x x >  xo 
X +2aX + H ( x )  = /3 COS (ut) H(x) = 

where (Y is the damping coefficient, p is the forcing amplitude and w is the forcing 
frequency (we keep as closely as possibly to the notation of SH for convenience). In 
this limit, 

a( t )  + -X( t )  when x = xo. 

The motion is restricted to x < xo. The general solution of the equation with initial 
conditions 

4to) = xo X( to )  = Yo 

is, if (Y < 1, 
x(t;  tO,yo)= y c o s ( w f ) + S  sin(wt)+{Acos[Cl(t- f o ) ] + B  sin[Cl(r-to)]} exp[-a(t-t,)] 

(2) 
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where 

y = ( l  - w 2 ) p / A  S = 2awp/A A = ( 2 a ~ ) ~ + ( 1  - w 2 ) 2  

R = ( 1  - a 2 )  CO = cos(wt0) so = sin(wto) A = xO-  Y C O -  6 ~ 0  

B = [ yo  + a x 0  + S O ( ~ W  - 6a)  - C ~ ( Y ( Y  + Sw)]/Sz 

x ( t ;  t o , y o ) = y ( t ;  t o , yo )=w[6  cos(wt) -ys in(wt )]+{(RB-aA)cos[ f l ( t - to )]  

-(flA+aB)sin[R(t-  to)]} exp[-a(t-t,)]. (3) 
If xo = 0 then p scales out completely. When xo # 0, only the relative size of p and xo 
are important, and p and x may be replaced by p/lxol and x/lxol. Thus in the present 
case we may set xo = * 1 and vary p. 

3. The Poincark map and the Jacobian matrix 

The equation of motion ( 1 )  maybe rewritten, between impacts, as two coupled first-order 
differential equations 

X = y  j =  - 2 a y - x + p  cos(wt). 

The time evolution of the system from some set of initial conditions then can be 
identified with unique paths in (x,y) phase space. The PoincarC section may be 
conveniently taken to be {(x, y ) :  x = xo, y > 0). The mapping of successive points 
Pk = (fk, Yk) in the PoincarC section 

Pktl = F ( p k )  (4) 
can not, in general be expressed in analytic form, since the time t k + l  is a root of a 
transcendental equation involving tk, yk. Nor is it continuous, for a small variation of 
Pk can lead to the expected impact being missed. However, the matrix ( m )  whose 
determinant is the Jacobian D where 

D=d(tk+l,  Yk+l)/a(fkt y k )  ( 5 )  
is calculable and SH have shown that for a 1-impact period-n orbit (that is, one which 
produces an impact with the same phase of the drive, wt mod 2~ and velocity every 
n forcing periods) with unity restitution coefficient and 

Y k i l  = Yk f k + l  = t k  f27in/w 

its determinant (the Jacobian itself) and trace are given by 

D = d e t ( m ) = E 2  

T=Tr(m)=2E[(pCk -Xo)S/Ryk -C) 

E = exp( -2ma/o )  

s = s in (2~nR/w)  ck = cos(wfk) s k  = sin(wtk) 

c = cos(2~nR/w)  

(their expression gives the coefficient of xo as $1; this does not affect their subsequent 
arguments for the impact oscillator as they set xo = 0). The eigenvalues of ( 5 )  are given 
by 

(8) AI, A2 =i[ T* ( T2 -4D)’”I 
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and the motion is stable if both eigenvalues lie within the unit disc on the complex 
plane (Iooss 1979). 

4. One-impact orbits and their stability 

For a one-impact period-n orbit tk, yk are given, after some algebra, by 

t k  = w - '  {tan-'(Y/Z) +cos- '(-x/  W)} 

w2 = Y 2  +z2 

z =  y(wr- l i l -~) -~(wr+++w) 

where 

Y =  y ( w T + + + w ) + 8 ( + r - / A - A )  

X = xO(A - d J A )  

(9) 

and 

A = E s / n  

yk = w [ ( ~ + ~ - + ~ * ) / ( ~ ~ _ - h 2 ) ] ( 8 C k - - k ) .  (10) 

r* = 1 - Ec * ah + = 2 - r +  

(All the above is worked through in greater detail by SH.) As w + 2nn ,  the denominator 
in (10) becomes small relative to the numerator; hence the resonance structure observed 
at xo = 0 by SH and TG, in which the maximum displacement from xo becomes large, 
also appears. At low p, where the asymmetry is more important these peaks are 
displaced towards higher w. Bifurcations only occur when A = * 1, for since D = A I A z  < 
1, if the eigenvalues A are complex then they are conjugate and / A I  < 1 ; therefore the 
only way an eigenvalue can pass through the unit circle is along the real axis, so no 
Hopf bifurcation is possible and at the bifurcation point A = + l  (tangent bifurcation) 
or A = -1 (flip bifurcation). So, rearranging (8) 

D F T + 1 = 0 .  (1 1)  
Substituting from (6) and (7) 

fis,yk + 2PECkS * 2 E X ~ S  = 0 

where 

s*= 1 +E2*2Ec. 

A minimum condition for a one-impact orbit may be obtained for p from (9), 

- X I  w=cos(@tk-4)  

where 

4 =tan- '(  Y/z), 

W is linear in P, so writing W ' =  W / P ,  

P m i n  = IX/ W'I. 

Below this value of p ,  a one-impact orbit of the given periodicity n does not exist. 
We may rearrange (1 2 )  to give the curves in the p w  plane on which bifurcation occurs. 
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M'ri ti ng 

G = U [ ( [ '  . I 7  + 12)/&r - 1'1 6' = s / p  Y'= Y I P  
so that 

PG(6 ' cL  - Y ' s A ) ,  

the condition for A = * I  becomes 

where 

M = - O S ,  Gy '  N, = ' 2 E s  +RS,G6' 

N O M  

ch = -X cos 41 w - sin 4 sin[cos-'(-X/ w)] 
s L  = -X sin &/ w +cos 4 sin[cos-'(-X/ w)] 

therefore 

= -xz/ w? - [* Y( 1 - x'/ W2)' 2 /  W] 

T i  = -xu/ W'+[*Z(l - x'/ w2y2/  W ] .  

The choice of sign in (15) is a problem, resulting from the choices of range of the 
inverse functions in (9), but the correct procedure seems to be to choose the sign so 
that i t  is the same as that of K (see below). This sign does not affect K because 
squares are taken, but it does affect y and hence which parts of the curves are eliminated. 
With some more algebra an expression for P ( u ,  cy, Xg, n )  at the bifurcations is found: 

p -  = ( K ; + X ' /  W")' * 
K ,  = { X ( M ,  Y'+N,Z ' ) /  W ' i 2  W'ExgS}/(M,Z'-NTY') 

Y ' =  Y I P  

(16) 

Z' = z/ p. 

Solutions with .vi < 0 are eliminated as they belong to orbits in x > Xg. Orbits which 
cross x = x,) more than once must also be eliminated by checking through the path. I f  
one of these orbits appears as some parameter is varied then there will be a discontinuity 
in the map. 

In figure 2 ( 6 )  this result is shown by the small stippled regions. If the parameters 
( P ,  0 1  move into this region the one-impact orbit will disappear before the expected 
tangent bifurcation occurs: this is not a bifurcation and is responsible for the dis- 
crepancy between the theoretical and computed values of p at the disappearance of 
the one-impact orbit ( U  = 1.5) shown in table 1. 

With yet more algebra K, is found to be identically zero, so that the condition (13) 
is implied by the condition A = +1 (namely tangent bifurcation). The minimum of p 
may also be derived by considerations of the energy balance between impacts when 
the orbit is decomposed as a Fourier series. If Xg = 0 then no tangent bifurcations can 
occur and the regions of stability become vertical strips centred on o = 2 n n ,  as found 
by S H  for the slightly different system with a restitution coefficient. 

The regions of stability for one-impact orbits for periods 1,  2, and 3 are shown by 
the large hatched regions in figure 2(a) (where xg= + I )  and in 2(6) (where xg= -1 ) .  
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Figure 2. The regions of stability (shaded) for one-impact period-n orbits, with n = I ,  2 ,3 ,  
(L = 0.05, ( a )  xn = + I  and ( b )  xo = -1. As p +a, they become strips centred on w = 2nn. 
Broken curves correspond to one eigenvalue passing through + I  and full curves to passing 
through - I .  Stippled regions are inaccessible as the orbit penetrates beyond x = xn between 
impacts (see table I ) .  

Therefore, figure 2(a )  refers to the case where the rest point of the impacting system 
is that of the unperturbed system, and figure 2(b )  refers to the case where the wall 
displaces the oscillator under conditions of zero drive. Clearly for small frequencies 
and drive amplitudes the motion is stable in each case. The full curves refer to flip 
bifurcations (A = -1) and the broken curves to tangent bifurcations. For the value of 
the damping coefficient of 0.05, the natural frequency R of the oscillator is 0.9975. 
Moving along one of the flip bifurcation boundaries (full curve) towards w = 2 n R  or 
approximately, w = 2n, s tends to zero and so the impact velocity tends to zero (as can 
be seen by rearranging (1  2 )  to put y ,  on the left-hand side) and the oscillator does not 
reach the wall. There is a discontinuity in T at w = 2 n R  where the full curves reach 
the same point on each diagram in frequency-drive amplitude space. The impact 
velocity changes sign and so the motion occurs in the other half space, which leads 
to the line appearing on the other half of the figure. The same thing happens for the 
tangent bifurcations ( A  = +l)-broken lines-and the broken and full curves are tangent 
at w = 2 n R  (not apparent on the scale of the figure) so the boundary of the stable 
regions is continuous and has a continuous first derivative. This can be seen by 
examining the equations of the curves (16), which are both continuous at w = 2 n R .  
K ,  vanishes identically and K-(w  = 2 n R )  = 0. Therefore p- = p+ = X /  W’ at w = 2 n R .  
The slope of p- is 

-- ap- K-(aK-/aw) +t(a/aw)(X2/ wi2) - 
aw ( K !  + X 2 /  W’2)1’2 

and so at w = 2 n O  where K-=O we find 
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Thus p+ and p- are tangent at w = 2 n n .  This does not, of course, prove that /3+ and 
p- have no other intersections, but we have examined plots for small intervals around 
w = 2 n R  for various n and have not found any sign that p+ and p- touch more than 
once. 

As the damping coefficient a tends to unity the bands of stability become wider 
and for xo = +1, bifurcations with frequency constant and amplitude increasing disap- 
pear. In some places, e.g. at higher w with xo = - 1, the bands overlap and tangent 
bifurcations to another 1-impact orbit with periodicity one fewer become possible as 
the forcing amplitude is decreased. This overlap leads one to expect hysteresis, and 
an example is shown in figure 3. Only the first three zones are plotted. 

70 t 1 

I I 

.Ibl I 
1 

1 0  i 
J 

2 0  30 4 0  4 0  30 2 0  
P P 

Figure 3. Hysteresis in transitions between single-impact orbits, (a) with increasing p and 
( b )  with decreasing p, showing a A = + I  bifurcation, calculated to be at p = 1.495. The 
upper line has period 2, the lower has period 1 ( w  = 4.5, n = 0.05, x, = - I ) .  

5. Brief program description 

The programs used to produce the bifurcation diagrams with changes in /3 or w both 
have essentially the same structure. The control parameter ( p  or w )  is altered in small 
steps. At each value of this parameter the system is allowed to evolve for a number 
of impacts, usually 100. Then for the next 100 or so impacts both the time between 
impacts Atk = fk - fk-1 and the velocity yk = x k  are recorded and plotted on the diagrams 
as a function of the control parameter, which is then altered again. 

Since the solution (x, y )  is analytic between impacts, numerical integration is not 
necessary. The trajectory can be checked until it crosses x = xo and the root fk can be 
found using a Newton-Raphson (NR) method. However, the calculation of the transcen- 
dental functions appearing in the exact solutions is costly in computer time, and since 
only the system variables at impact were of interest an approximate (and much faster) 
numerical integration was performed between impacts in order to give a seed for the 
NR root-finding routine. This then used the analytic solution to find the crossing time. 
The routine terminated when Ix -xol < E where E was typically of the order 
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This will not, of course give exactly the same phase space trajectories as a program 
computing analytic expressions, because each NR iteration will produce slightly different 
values of x such that Ix - xoI < E.  However, the trajectories for periodic solutions 
produced by the different methods will approach to within order E. This, rather than 
rounding errors, will set the accuracy, although the convergence to periodic points (Pk) 
on the PoincarC section is not limited by E since on this scale the numerical map is 
more complicated, due to the structure imposed by the N R  routine. The mapping which 
the computer performs (as distinct from the mapping which it simulates) comprises 
two sections, the first taking Pk to a point with x > xo, and then a sequence of mappings 
produced by the NR iteration, which is contracting in the absence of nearby turning 
points. In chaotic regions, however, the trajectory may be seriously affected, for orbits 
which differed by less than E at some time will diverge exponentially with time. (TG 

looked at a region of chaos between w = 8 and w = 10 and found a noisy exponential 
divergence.) Furthermore, for values of the parameters where more than one orbit is 
stable, transitions may occur either as a result of the inaccuracy or in the approach to 
equilibrium from the previous stable point. Of course, we can never be sure with 
numerical methods that a particular orbit is stable or not; here the orbits labelled 
‘stable’ persisted for order lo3 iterations. However, unstable subharmonics with life- 
times of order 10 s at 1.5 KHz have been observed using Robinson’s apparatus, so it 
is not clear that all stable orbits deserve their name. 

6. Results of the digital simulation 

Table 1 summarises a few theoretical and experimental values of the control parameter 
p at the disappearance of stable one-impact orbits. Thus it would appear from the 
simulation that these are supercritical bifurcations. Passing through A = - 1 leads to 
stable 2-impact orbits of doubled period. If p is decreasing through A = +1 with 
xo = + I  the orbit collapses, ceases to impact and returns to the linear steady state case. 
If xo = - 1 the orbit cannot collapse and may fall into another stable periodic orbit 
with a lower threshold, or may drop into a region of chaos. 

Figures 4(a), 4(b), 5 ,  6 ,  7 show some bifurcation diagrams with yk recorded on the 
y-axis. Figures 4(a) and 5 show period doubling leading to chaos followed by the 
emergence of a three-impact period n + 1 orbit; figure 6 shows a particularly complicated 

Table 1. 

Thresholds 

Lower 

xo n Pthec.ry Pcomputed A 

-1 3.0 1 6.423 828 6.423*0.001 -1 
-1  3.5 1 3.001 72 3.002*0.001 -1  
-1  1.5 1 
+ I  3.0 2 6.81858 6.819*0.001 -1  
+ I  2.5 2 1.94805 1.949*0.001 -1 

Ptheory Pcomputcd A 

0.188899 0.189*0.001 + I  
0.135 151 +1 
2.815 66 3.28k0.01 t 
0.780939 0.781 *0.001 + I  
0.659 476 0.660*0.001 + I  

t Here there is a discontinuity in the map-the orbit touches x = x, between tk and r k + , .  
a = 0.05. 
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Figure4. ( a )  Period doubling from 1-impact period-2 orbit and emergence of stable 3- 
impact orbit. (b) The same, with decreasing B, showing coexistence of 3-impact orbit with 
stable 2-impact orbits near p = 1 1  (U  = 3.0, a = 0.05, x, = +I) .  

a -  

b -  

Yk 
4 -  

2 -  

0 -  i 0 1  4 
1 ,  

8 12 14 0 16 0 j a  o 
P P 

Figures. The same as in figure 3 but with xo= -1. 
The structure is similar but the 3-impact orbit is not 
coexistent with stable 2-orbits. 

Figure6. As figure 3 but at higher w(14), showing 
many transitions between stable periodic orbits. 

set of stable orbits separated by transitions and chaos, while figure 7 shows two- and 
four-impact orbits not resulting from period doubling. The four-impact orbit occurs 
in a region where a one-impact period-two orbit is also stable. 

We have already seen that there can be more than one stable periodic orbit for 
some sets of parameters. Periodic and chaotic orbits may also coexist for certain 
regions in (p,  w, a) space. If there are transitions between them on altering a parameter 
hysteresis typically occurs. Whenever or not the transition points on the diagrams are 
actually where the first orbit ceases to be stable is open to question. The attracting 
sets in the PoincarC section for coexistent orbits may be close, so that after a small 
increase in the control parameter the last point for the previous value of p or w, can 
lie in the attracting set of another orbit. This would result in a transition whose position 
varies with the size of the increment of the control parameter. It is this effect that is 
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Figure 7. 2-impact period-3 and 4-impact period-4 orbits not resulting from period doubling. 
The 2-impact orbit nearly always appears between 1 -impact regions. 
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Figure 8. (a) First return map of At, = tk  - t k - !  (time 
between impacts in units of the drive period). Branch 
intersecting at At, = l.O(i.e. a solution singly periodic 
in the drive) is a vestige of the I-impact orbit and 
its associated bifurcations. The dense areas, one with 
At, = 0.4 and two at Atk = 1.3 may be associated with 
the 3-impact period-3 orbit emerging from the chaos. 
(p=lO.S, w=3.0, a = O . O 5 ,  x,=-l). (6) Second 
return map of Atk, showing the shift of points associ- 
ated with 2-impact orbits. The points associated with 
the 3-impact orbit remain relatively unaffected ( p  = 
10.5, w =3.0, a =0.05, xo= -1 ,  5000 iterations). (e) 
Third return map (at higher p )  close to the emergence 
of the 3-impact orbit (figure 5 ) ,  showing its associated 
structures, intersections with y = x are at about 1.3, 
1.3 and 0.4, adding up to period 3. ( p  = 13.0, w = 3.0, 
a = 0.05, x,, = -1 ,  5000 iterations). 
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Figure9. An expanded view of figure 8(a) with 
70 OOO iterations, showing the Cantor set-like 
structure. 

1.2 

o .e 
.L* a 

0.4 

0 
U 0 2  06 1 .o 1.4 

A h  
Figure 10. Schematic diagram of figure 8(a), show- 
ing structures in return map associated with the 
different orbits emerging from chaos. 

thought to be responsible for the failure to each the accumulation point in figure 5. 
With smaller increments the higher n 2-impact orbits appear, and the accumulation 
point is 10.292 <Pact< 10.293. This is distinct from the type of transition where the 
orbit touches x = xo between f k - 1  and t k .  

The return maps of Ark and y k  (figures 8(a) ,  8 (b) ,  8(c), 9, IO) show a high degree 
of folding, and their transverse structure is Cantor set-like, (figure 9 is a blow-up of a 
region in figure 8(a )  with 70,000 iteractions) strongly suggesting that the attractors 
have fractional dimension. 

The full return map is a surface embedded in the four-dimensional manifold 
( f k - I ,  t k ,  Y k - I ,  y k ) .  We have taken two submanifolds ( f k - 1 ,  t k )  and ( y k - 1 ,  y k ) ,  and the 
sections of the attractor of the return map so revealed seem to have dimension between 
one and two, suggesting that the full map has attractors with dimension between two 
and three. (Using f k  instead of the phase at impact, t k  mod 27r/w, does remove some 
information from the map, since ( t k ,  y k )  do not uniquely determine ( f k -  1, y k -  1); the 
phase is required. However, when t k  is expressed in multiples of the driving period, 
the remnants of periodic orbits are easy to see on the return maps.) The intersections 
of the curves with the line of unit slope occur very close to the values expected from 
the periodic orbits close by. The first, second and third (at higher p )  return maps in 
the chaotic region just after the accumulation point in figure 5 show two distinguishable 
structures, depicted schematically in figure 10, associable with the two different orbits 
(periods two and three) that emerge from the chaos. 

The large shaded region in figure 10 shows the parts of figure 8 that are associated 
with the cascade of period doubling bifurcations preceeding the chaos (which occurs 
for 10< p < 13.5 in figure 5(a)) whereas the three sets of full lines at (1.3, 0.4), (1.3, 
1.3), (0.4, 1.3) depict those parts which can be identified with the period 3 motion that 
appears above p = 13.5 in figure 5(a). 

The inner structure shows branches which intersect & + I =  t k  with negative slope of 
magnitude greater than one. At lower @, one of these will give the I-impact period-1 
stable orbit. The second return map shows this structure shifted, with two intersections 
corresponding to the 2-impact orbit existing when 6.4 < P < 9.5, while the other structure 
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is little affected. The third return map shows that this structure corresponds to a 
3-impact orbit which, as /3 is increased becomes more prominent (figure 8(a)) ,  i.e. the 
system spends more time in the unstable 3-impact region. 

One would expect if the system lingers in unstable orbits (here a 3-impact orbit) 
that peaks should be apparent in the frequency spectrum of x ( t ) ,  and indeed such 
peaks are observed (Usher and Jefferies) in the system of coupled impact oscillators 
at subharmonic frequencies of the drive. Figure 11 shows the first return map of y k ,  

the impact velocity. The structure of this map take longer (more iterations) to emerge, 
but the complicated folding is here very apparent. Again, there are 'preferred' regions 
around the sites of formerly stable periodic attractors. 

The Poincari sections ( W t k  mod 27r, y k )  (figures 12(a), 12(b)) also show separation 
into regions belonging to different orbits, each region showing an attractive Henon-like 

0 2 4 6 8 
Yk 

Figure 11.  The first return map of the impact velocity y, for the same parameters as figure 
8(a).  
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Figure 12. (a) PoincarC section taken at x=x,,, y > O ,  just after period doubling from 
1-impact orbit, ( p  = 10.5, w =3.0, a =0.05, xo= - 1 ,  SO00 iteractions) ( b )  and at higher p 
showing predominance of 3-impact structure and phase shift. 
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structure. In figure 12(b), closer to the emergence of the 3-impact orbit, there are bare 
patches not found in figure 12(a), presumably belonging to the aftermath of the cascade 
of bifurcations from the single impact orbit. 

The collision of these two attracting basins is conjectured to provide an explanation 
for the crisis (Grebogi er al 1982) of the attractor in figure 5 ,  where the bounds of the 
motion undergo a discontinuous change. Jeffries and Perez (1983) have also observed 
this kind of crisis, which is distinct from that caused by the interaction of an unstable 
and a chaotic attractor, as outlined by Grebogi er a1 (1982). 

7. Conclusions 

Impact oscillators of this sort may be considered as an idealisation of simple vibrating 
impacting systems, such as moored ships and beams constrained by stops. Although 
the first derivative is discontinuous, and hence non-physical, it is relatively easy to 
obtain computational results since the motion between impacts is simple and the 
time-expensive computation can be restricted to the region of phase space near impact. 
Analytic results for the case of stable orbits with one kind of impact repeated after an 
integer number of periods agree well with the computer simulation. The simplicity of 
the system belies the structure found in its motions. 

The return maps cannot be expressed in analytic form and in the chaotic region 
display folding and show attractors with probable fractional dimension, but their local 
structure reflects the behaviour of nearby stable orbits. The mapping has many 
discontinuities, especially for xo= +1, which provide much of the interest. One way 
to make the mapping more tractable is to drive the system impulsively. This would 
allow orbits that previously would have crossed x = xo, but the same single impact 
period n orbits should appear, with their associated bifurcations. This system is less 
interesting physically but more tractable to analysis. 
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